Evaluating the life cycle benefits of nanoenabled polymers through food waste avoided

Edward Westerband & Andrea Hicks University of Wisconsin-Madison Department of Civil and Environmental Engineering

What does the future look like?

Year

(Hicks et al., 2015, ES&T)

(Xiu et al., 2012, NanoLetters)

Study	Material	Brand	Product size [cm]	Initial Ag content [µg/g]	Silver migrated range [ng/cm ²]	Silver migrated range [%]
[1]	HDPE (bag)	Fresher Longer	29 x 27	28	0.1	0.06
[5]	PP (container)	Kinetic Go Green	13 x 9 x 7	3,200	31.5	0.01
	PP (container)	Oso Fresh	11 x 8 x 5	3,300	10.2	0.01
	LDPE (bag)	Fresher Longer	20 x 20	3,300	3.8	0.02
[15] ^a	PE (bag)	Sunriver Industrial	15 x 15 x 0.007	100	33	*
[17]	PE (container)	Kinetic Go Green	*	1	2.8	1.4
	PE (container)	Original Always	*	11.9	2.7	0.2
	PE (bag)	Fresher Longer	*	22.5	2.0	1
	HDPE (bag)	Special breast milk	*	31.2	3.1	1.6

Plastic Nanosilver

0.02

0.00

High Ag

2.0E-10

1.0E-10

0.0E+00

No-Ag

Study	Food type	Functional unit	Global warming (kg CO2 eq.)	Ozone depletion (kg CFC-11 eq.)	Acidification (kg SO ₂ eq.)	Eutrophication (kg P eq.)
(Pelletier, 2008)	Poultry	1000 kg	1,395	32.2 E-09	15.8	3.9
(da Silva, et al., 2014) ^a	Poultry (France standard)	1000 kg	2,220	-	28.7	13.8
(da Silva, et al., 2014) ^a	Poultry (Brazil small system)	1000 kg	1,450	-	34.5	14.4
(da Silva, et al., 2014) ^a	Poultry (Brazil large system)	1000 kg	2,060	-	31.4	14.0
(Andersson & Ohlsson, 1999) a	Tomato ketchup sauce	1000 kg	942	-	-	-
(Tecco, et al., 2016) ^a	Raspberry	1 kg	0.1682	-	-	-
(Foster, et al., 2014) ^a	Raspberry	1 kg	7.3	-	0.01	0.005
(Kulak, et al., 2015) ^a	Bread (France)	1 kg	0.908	9.51 E-08	-	0.0001
(Kulak, et al., 2015) ^a	Bread (Spain)	1 kg	1.429	1.34 E-07	-	0.0003
(Braschkat, et al., 2003) ^a	Bread	1 kg	0.45	-	0.0025	0.004
(Blengini & Busto, 2009) ^a	White rice	1 kg	2.76	0.10 E-06	-	-
(Beccali, et al., 2010) ^a	Orange juice	1 kg	5.7	-	0.039	0.011
(Girgenti, et al., 2013) ^a	Raspberry	125 g	0.053	-	-	-
(Girgenti, et al., 2013) ^a	Blueberry	125 g	0.055	-	-	-
(Hospido, et al., 2003)	Dairy milk	1 L	1.05	5.12 E-08	0.0085	0.00531

Table 1. Literature review of environmental impacts from producing different types of food

^a Values were not studied in their respective referenced study

Study	Product	Nanosilver source	Effectiveness	
(Metak & Ajaal, 2013)	Carrots chips	Commercial polymer container	Shelf life extended from 5 days to 10 days.	
(An, et al., 2007)	Green asparagus	Coating solution	Shelf life extended from 15 days to 25 days	
(Emamifar, et al., 2010)	Orange juice	Commercial polymer packaging	Shelf life extended from 28 days to 56 days	
(Cozmuta, et al., 2015) ^a	Wheat bread	Polymer films produced on-site	Shelf life extended from 2 days to more than 6 days	
(Li, et al., 2017) ^{a,b}	Rice	Polymer container produced on-site	Shelf life extended from around 26 days to more than 35 days	
(Azlin- Hasim, et al., 2015)	Chicken	Polymer films produced on-site	Shelf life extended from 7 days to 8 days	

Conclusions

- nAg enabled food storage containers have the potential to reduce food spoilage
- The added environmental impact of the nAg in the containers is small relative the container
- Small edible lifetime extensions of food by these containers is enough to negate the additional environmental cost of nano-enabling

Acknowledgements

U.S. Environmental Protection Agency Assistance Agreement No. RD83558001-0 that funded this research

Graduate Engineering Research Scholars UNIVERSITY OF WISCONSIN-MADISON

Questions?

www.zazzle.com